

prepASH 390 Series

Sewage sludge has valuable agronomic properties in agriculture. In using sewage sludge account must be taken of the nutrient needs of the plants without, however, impairing the quality of the soil and of surface and ground water. Some heavy metals present in sewage sludge may be toxic to plants and humans.

The sewage sludge contains mainly the microbes of the biological treatment of wastewater, sand, and water. Dry mass and ash determination are done in the standard analysis of sewage sludge and in wastewater (usually done after filtration to reduce the water).

This analysis gives first information on organic and inorganic content of the sludge.

Use of sewage sludge in agriculture

https://environment.ec.europa.eu/topics/waste-and-recycling/sewage-sludge_en

The European Union regulates use of sewage sludge in agriculture to prevent harmful effects on soil, vegetation, animals, and humans. In particular it sets limits on the concentrations of certain substances in these sludges, bans the use of these sludges in certain

cases and regulates the treatment of sludge. ACT Council Directive 86/278/EEC of 12 June 1986 on the

protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture (See amending acts)

PrepASH® - optimal solution for the water treatment analysis

Reduced time and effort

prepASH is a fully automatic drying and ashing machine, so no multiple weighing back after time consuming cooling down in the desiccator but automatic calculation of results.

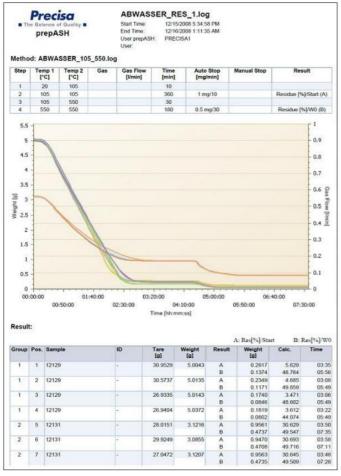
Working in groups of similar samples in a single run will rise efficiency of and optimise time of analysis.

· Improved safety and efficiency

No more dangerous analysis with the open flame. With prepASH Analyses can be done in time slots unused or hardly ever used so far, e.g., at night.

Increased quality

Up to 20% of each ash determination has to be


prepASH 390 Series

re-analysed because of faulty/undefined results.

prepASH is highly repeatable and reliable!

• Detailed analysis reports.

Due to the permanent recording of measurements during the entire process and the automatic saving of the final results, all data are retrievable at any moment

Precisa The Balance of Quality prepASH		ABWASSER_RES_1.log Start Time: 12/15/2008 5:34:58 PM End Time: 12/16/2008 1:11:35 AM User prepASH: PRECISA1 User:							
Resul		Sample	ID	Tare	Weight	Result	A: Res[%]/Star	t B: F	Res[%]/W
100000				4-4			100000000000000000000000000000000000000		1000
2000	Marine Majori		7.001	(9)	[9]		[9]		
2	8	12131	-	[g] 27,2395	(g) 3.1226	A	0.9559	30.613	04:1
2		12131	-	27,2395	3 1226	A B	0.9559 0.4741	49.600	04:1
	8		-			A	0.9559 0.4741 0.2222	49.600 4.443	04:1 07:3 04:1
2	9	12131		27.2395 27.8015	3.1226 5.0009	A B	0.9559 0.4741 0.2222 0.0614	49.600 4.443 27.611	04:1 07:3 04:1 05:4
2		12131	-	27,2395	3 1226	A B A	0.9559 0.4741 0.2222 0.0614 0.2537	49.600 4.443 27.611 5.019	04:1 07:3 04:1 05:4
3	9	12131 12136 12136	•	27 2395 27 8015 28 7896	3.1226 5.0009 5.0538	A B A B	0.9559 0.4741 0.2222 0.0614 0.2537 0.0715	49.600 4.443 27.611 5.019 28.186	04:1 07:3 04:1 05:4 04:0
2	9	12131	-	27.2395 27.8015	3.1226 5.0009	A B A	0.9559 0.4741 0.2222 0.0614 0.2537	49.600 4.443 27.611 5.019	04:1 07:3 04:1

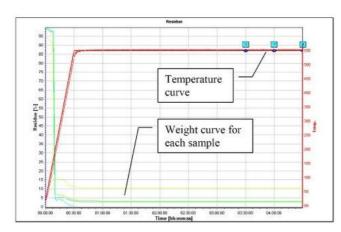
Group: 1	A-Result	A-Calc.	B-Result	B-Calc.
mean	0.21813	4.34038	0.10492	47.02460
std	0.05027	1.01089	0.02725	2.56205
rstd	23.04829	23.24215	25.99314	5.35717
n	4	4	4	4
Group: 2	A-Result	A-Calc.	B-Result	B-Calc.
mean	0.95383	30.64503	0.47303	49.59288
std	0.00455	0.03441	0.00150	0.08998
retd	0.47733	0.11229	0.31799	0.18145
n	4	4	4	4
Group: 3	A-Result	A-Calc.	B-Result	B-Calc.
mean	0.24003	4.76790	0.06707	27.91603
std	0.01616	0.29482	0.00516	0.28912
rstd	6.73160	6.18344	7.69640	1.03567
n	3	3	3	3

prepASH 129: filtered wastewater/sludge samples Sample information:

Wastewater/Sludge Samples

Analysis procedure: Samples are filtered with an ash free filter, dried and ashed.

The steps for the complete analysis in prepASH are listed in detail below. The samples used for this application have already been filtered and dried by the customer, therefore only the ashing step has been done in prepASH.


All fundamental data and operating parameters, such as changes in sample weight, temperature, gases, etc. are stored and graphically displayed. Automatic calculation of results.

Method

Step	Time	Temp 1	Temp 2	Auto Stop	Gas
1	30 min	25°C	550°C		
2	3 h*	550°C	550°C		
3	30 min	550°C	550°C		
4	30 min	550°C	550°C		

prepASH 390 Series

*3 hours given by customers method. Samples would reach stable weight much earlier (see graphic)

Results

No.	Sample Name	Weight	Ash [g] after 3 h	Ash [g] after 3.5 h	Ash [g] after 4 h
1	87 LUMMEN	0.1103	0.0116	0.0115	0.0116
2	92 LUMMEN	0.0912	0.0029	0.0029	0.0029
3	103 LUMMEN	0.0897	0.0023	0.0023	0.0023
4	filter	0.0784	- 0.0001	- 0.0001	0.0000

prepASH - optimal solution to determine ash

Reduced time and effort. prepASH is a fully automatic drying and ashing equipment, so no multiple weighing back after time consuming cooling down in the desiccator but automatic calculation of results. Working in groups of similar samples in a single run will rise efficiency and optimise time of analysis.

Improved safety and efficiency. No more dangerous analysis with the open flame. With prepASH analyses can be done in time slots unused or hardly ever used so far, e.g., at night.

Increased quality. Up to 20% of each ash determination has to be re-analysed because of faulty/undefined results.

prepASH is highly repeatable and reliable!

Detailed analysis reports. Due to the permanent recording of measurements during the entire process and the automatic saving of the final results, all data are retrievable at any moment.

Working Steps of Moisture and Ash Determination							
Standard Method With Oven	Vs.	prepASH					
Heating out crucibles for constant weight before		Possibility to pre- define a "heating out program"					
Measuring tare of crucible one by one		AUTOMATICAL PROCEDURE					
Sampling		Sampling					
Weighing + documentation of each crucible	Dry Matter	AUTOMATICAL + entering the sample name/ID					
Samples in drying oven + START		START PROGRAM					
Removing samples from oven + cool down		RESULTS (moisture)					
Back weighing samples, calculation (moisture)							
Pre-ashing with rapid incinerator or hot plate		RESULTS (ash)					
Samples in muffle furnace							
Removing samples + cooling down in exicator	Ash						
Back weighing for stable results (repeat?)							
Calculation and documentation (ash)							

prepASH 390 Series

Procedure for automatic measurement of the samples:

- Tare all crucibles (done fully automatic in prepASH)
- 2. Put empty filters into crucibles, weigh in (done in prepASH)
- 3. Filter the samples
- 4. Enter filters with samples into crucibles (make sure to enter the filters in the same crucibles as in step (2))
- 5. Start run (drying and ashing fully automatic)

Data in grey are automatically given, data in blue have to be calculated in prepDATA.

Dry mass and ash can be correlated to the volume too.

For more information, please contact us at:

Precisa Gravimetrics AG

Moosmattstrasse 32

CH-8953 Dietikon

+41 44 744 28 28

info@precisa.ch

www.precisa.com

No.	Sample Name	Tara=automatic taring in step 1	Filter Weight [g] = weighing in step 2	Filter + Drymass = result after drying in prepASH	Dry mass in [g] = E- D	Ash [g] = result after ashing in prepASH	Ash [%] rel to dry mass = G/F*100%
1	Probe 1	29.1619	0.0969	0.6680	0.5711	0.0175	3.06
2	Probe 2	29.5602	0.1196	0.6643	0.5447	0.0176	3.23
3	Probe 3	30.0026	0.0991	0.6481	0.5490	0.0171	3.11
4	Probe 4	28.5821	0.1010	0.7960	0.6950	0.0177	2.55